↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
fl_in(.(E, X), R, s(Z)) → U1(E, X, R, Z, append_in(E, Y, R))
append_in(.(X, Xs), Ys, .(X, Zs)) → U3(X, Xs, Ys, Zs, append_in(Xs, Ys, Zs))
append_in([], X, X) → append_out([], X, X)
U3(X, Xs, Ys, Zs, append_out(Xs, Ys, Zs)) → append_out(.(X, Xs), Ys, .(X, Zs))
U1(E, X, R, Z, append_out(E, Y, R)) → U2(E, X, R, Z, fl_in(X, Y, Z))
fl_in([], [], 0) → fl_out([], [], 0)
U2(E, X, R, Z, fl_out(X, Y, Z)) → fl_out(.(E, X), R, s(Z))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PrologToPiTRSProof
fl_in(.(E, X), R, s(Z)) → U1(E, X, R, Z, append_in(E, Y, R))
append_in(.(X, Xs), Ys, .(X, Zs)) → U3(X, Xs, Ys, Zs, append_in(Xs, Ys, Zs))
append_in([], X, X) → append_out([], X, X)
U3(X, Xs, Ys, Zs, append_out(Xs, Ys, Zs)) → append_out(.(X, Xs), Ys, .(X, Zs))
U1(E, X, R, Z, append_out(E, Y, R)) → U2(E, X, R, Z, fl_in(X, Y, Z))
fl_in([], [], 0) → fl_out([], [], 0)
U2(E, X, R, Z, fl_out(X, Y, Z)) → fl_out(.(E, X), R, s(Z))
FL_IN(.(E, X), R, s(Z)) → U11(E, X, R, Z, append_in(E, Y, R))
FL_IN(.(E, X), R, s(Z)) → APPEND_IN(E, Y, R)
APPEND_IN(.(X, Xs), Ys, .(X, Zs)) → U31(X, Xs, Ys, Zs, append_in(Xs, Ys, Zs))
APPEND_IN(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN(Xs, Ys, Zs)
U11(E, X, R, Z, append_out(E, Y, R)) → U21(E, X, R, Z, fl_in(X, Y, Z))
U11(E, X, R, Z, append_out(E, Y, R)) → FL_IN(X, Y, Z)
fl_in(.(E, X), R, s(Z)) → U1(E, X, R, Z, append_in(E, Y, R))
append_in(.(X, Xs), Ys, .(X, Zs)) → U3(X, Xs, Ys, Zs, append_in(Xs, Ys, Zs))
append_in([], X, X) → append_out([], X, X)
U3(X, Xs, Ys, Zs, append_out(Xs, Ys, Zs)) → append_out(.(X, Xs), Ys, .(X, Zs))
U1(E, X, R, Z, append_out(E, Y, R)) → U2(E, X, R, Z, fl_in(X, Y, Z))
fl_in([], [], 0) → fl_out([], [], 0)
U2(E, X, R, Z, fl_out(X, Y, Z)) → fl_out(.(E, X), R, s(Z))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
FL_IN(.(E, X), R, s(Z)) → U11(E, X, R, Z, append_in(E, Y, R))
FL_IN(.(E, X), R, s(Z)) → APPEND_IN(E, Y, R)
APPEND_IN(.(X, Xs), Ys, .(X, Zs)) → U31(X, Xs, Ys, Zs, append_in(Xs, Ys, Zs))
APPEND_IN(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN(Xs, Ys, Zs)
U11(E, X, R, Z, append_out(E, Y, R)) → U21(E, X, R, Z, fl_in(X, Y, Z))
U11(E, X, R, Z, append_out(E, Y, R)) → FL_IN(X, Y, Z)
fl_in(.(E, X), R, s(Z)) → U1(E, X, R, Z, append_in(E, Y, R))
append_in(.(X, Xs), Ys, .(X, Zs)) → U3(X, Xs, Ys, Zs, append_in(Xs, Ys, Zs))
append_in([], X, X) → append_out([], X, X)
U3(X, Xs, Ys, Zs, append_out(Xs, Ys, Zs)) → append_out(.(X, Xs), Ys, .(X, Zs))
U1(E, X, R, Z, append_out(E, Y, R)) → U2(E, X, R, Z, fl_in(X, Y, Z))
fl_in([], [], 0) → fl_out([], [], 0)
U2(E, X, R, Z, fl_out(X, Y, Z)) → fl_out(.(E, X), R, s(Z))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PrologToPiTRSProof
APPEND_IN(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN(Xs, Ys, Zs)
fl_in(.(E, X), R, s(Z)) → U1(E, X, R, Z, append_in(E, Y, R))
append_in(.(X, Xs), Ys, .(X, Zs)) → U3(X, Xs, Ys, Zs, append_in(Xs, Ys, Zs))
append_in([], X, X) → append_out([], X, X)
U3(X, Xs, Ys, Zs, append_out(Xs, Ys, Zs)) → append_out(.(X, Xs), Ys, .(X, Zs))
U1(E, X, R, Z, append_out(E, Y, R)) → U2(E, X, R, Z, fl_in(X, Y, Z))
fl_in([], [], 0) → fl_out([], [], 0)
U2(E, X, R, Z, fl_out(X, Y, Z)) → fl_out(.(E, X), R, s(Z))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PrologToPiTRSProof
APPEND_IN(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN(Xs, Ys, Zs)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PrologToPiTRSProof
APPEND_IN(.(X, Zs)) → APPEND_IN(Zs)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PrologToPiTRSProof
FL_IN(.(E, X), R, s(Z)) → U11(E, X, R, Z, append_in(E, Y, R))
U11(E, X, R, Z, append_out(E, Y, R)) → FL_IN(X, Y, Z)
fl_in(.(E, X), R, s(Z)) → U1(E, X, R, Z, append_in(E, Y, R))
append_in(.(X, Xs), Ys, .(X, Zs)) → U3(X, Xs, Ys, Zs, append_in(Xs, Ys, Zs))
append_in([], X, X) → append_out([], X, X)
U3(X, Xs, Ys, Zs, append_out(Xs, Ys, Zs)) → append_out(.(X, Xs), Ys, .(X, Zs))
U1(E, X, R, Z, append_out(E, Y, R)) → U2(E, X, R, Z, fl_in(X, Y, Z))
fl_in([], [], 0) → fl_out([], [], 0)
U2(E, X, R, Z, fl_out(X, Y, Z)) → fl_out(.(E, X), R, s(Z))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PrologToPiTRSProof
FL_IN(.(E, X), R, s(Z)) → U11(E, X, R, Z, append_in(E, Y, R))
U11(E, X, R, Z, append_out(E, Y, R)) → FL_IN(X, Y, Z)
append_in(.(X, Xs), Ys, .(X, Zs)) → U3(X, Xs, Ys, Zs, append_in(Xs, Ys, Zs))
append_in([], X, X) → append_out([], X, X)
U3(X, Xs, Ys, Zs, append_out(Xs, Ys, Zs)) → append_out(.(X, Xs), Ys, .(X, Zs))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
U11(append_out(E, Y)) → FL_IN(Y)
FL_IN(R) → U11(append_in(R))
append_in(.(X, Zs)) → U3(X, append_in(Zs))
append_in(X) → append_out([], X)
U3(X, append_out(Xs, Ys)) → append_out(.(X, Xs), Ys)
append_in(x0)
U3(x0, x1)
append_in(.(X, Zs)) → U3(X, append_in(Zs))
POL(.(x1, x2)) = 1 + x1 + x2
POL(FL_IN(x1)) = 2·x1
POL(U11(x1)) = x1
POL(U3(x1, x2)) = 1 + x1 + x2
POL([]) = 0
POL(append_in(x1)) = 2·x1
POL(append_out(x1, x2)) = x1 + 2·x2
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
↳ PrologToPiTRSProof
U11(append_out(E, Y)) → FL_IN(Y)
FL_IN(R) → U11(append_in(R))
append_in(X) → append_out([], X)
U3(X, append_out(Xs, Ys)) → append_out(.(X, Xs), Ys)
append_in(x0)
U3(x0, x1)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ PrologToPiTRSProof
U11(append_out(E, Y)) → FL_IN(Y)
FL_IN(R) → U11(append_in(R))
append_in(X) → append_out([], X)
append_in(x0)
U3(x0, x1)
U3(x0, x1)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ PrologToPiTRSProof
U11(append_out(E, Y)) → FL_IN(Y)
FL_IN(R) → U11(append_in(R))
append_in(X) → append_out([], X)
append_in(x0)
FL_IN(R) → U11(append_out([], R))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ PrologToPiTRSProof
FL_IN(R) → U11(append_out([], R))
U11(append_out(E, Y)) → FL_IN(Y)
append_in(X) → append_out([], X)
append_in(x0)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ PrologToPiTRSProof
FL_IN(R) → U11(append_out([], R))
U11(append_out(E, Y)) → FL_IN(Y)
append_in(x0)
append_in(x0)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Instantiation
↳ PrologToPiTRSProof
FL_IN(R) → U11(append_out([], R))
U11(append_out(E, Y)) → FL_IN(Y)
U11(append_out([], z0)) → FL_IN(z0)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Instantiation
↳ QDP
↳ NonTerminationProof
↳ PrologToPiTRSProof
U11(append_out([], z0)) → FL_IN(z0)
FL_IN(R) → U11(append_out([], R))
U11(append_out([], z0)) → FL_IN(z0)
FL_IN(R) → U11(append_out([], R))
fl_in(.(E, X), R, s(Z)) → U1(E, X, R, Z, append_in(E, Y, R))
append_in(.(X, Xs), Ys, .(X, Zs)) → U3(X, Xs, Ys, Zs, append_in(Xs, Ys, Zs))
append_in([], X, X) → append_out([], X, X)
U3(X, Xs, Ys, Zs, append_out(Xs, Ys, Zs)) → append_out(.(X, Xs), Ys, .(X, Zs))
U1(E, X, R, Z, append_out(E, Y, R)) → U2(E, X, R, Z, fl_in(X, Y, Z))
fl_in([], [], 0) → fl_out([], [], 0)
U2(E, X, R, Z, fl_out(X, Y, Z)) → fl_out(.(E, X), R, s(Z))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
fl_in(.(E, X), R, s(Z)) → U1(E, X, R, Z, append_in(E, Y, R))
append_in(.(X, Xs), Ys, .(X, Zs)) → U3(X, Xs, Ys, Zs, append_in(Xs, Ys, Zs))
append_in([], X, X) → append_out([], X, X)
U3(X, Xs, Ys, Zs, append_out(Xs, Ys, Zs)) → append_out(.(X, Xs), Ys, .(X, Zs))
U1(E, X, R, Z, append_out(E, Y, R)) → U2(E, X, R, Z, fl_in(X, Y, Z))
fl_in([], [], 0) → fl_out([], [], 0)
U2(E, X, R, Z, fl_out(X, Y, Z)) → fl_out(.(E, X), R, s(Z))
FL_IN(.(E, X), R, s(Z)) → U11(E, X, R, Z, append_in(E, Y, R))
FL_IN(.(E, X), R, s(Z)) → APPEND_IN(E, Y, R)
APPEND_IN(.(X, Xs), Ys, .(X, Zs)) → U31(X, Xs, Ys, Zs, append_in(Xs, Ys, Zs))
APPEND_IN(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN(Xs, Ys, Zs)
U11(E, X, R, Z, append_out(E, Y, R)) → U21(E, X, R, Z, fl_in(X, Y, Z))
U11(E, X, R, Z, append_out(E, Y, R)) → FL_IN(X, Y, Z)
fl_in(.(E, X), R, s(Z)) → U1(E, X, R, Z, append_in(E, Y, R))
append_in(.(X, Xs), Ys, .(X, Zs)) → U3(X, Xs, Ys, Zs, append_in(Xs, Ys, Zs))
append_in([], X, X) → append_out([], X, X)
U3(X, Xs, Ys, Zs, append_out(Xs, Ys, Zs)) → append_out(.(X, Xs), Ys, .(X, Zs))
U1(E, X, R, Z, append_out(E, Y, R)) → U2(E, X, R, Z, fl_in(X, Y, Z))
fl_in([], [], 0) → fl_out([], [], 0)
U2(E, X, R, Z, fl_out(X, Y, Z)) → fl_out(.(E, X), R, s(Z))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
FL_IN(.(E, X), R, s(Z)) → U11(E, X, R, Z, append_in(E, Y, R))
FL_IN(.(E, X), R, s(Z)) → APPEND_IN(E, Y, R)
APPEND_IN(.(X, Xs), Ys, .(X, Zs)) → U31(X, Xs, Ys, Zs, append_in(Xs, Ys, Zs))
APPEND_IN(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN(Xs, Ys, Zs)
U11(E, X, R, Z, append_out(E, Y, R)) → U21(E, X, R, Z, fl_in(X, Y, Z))
U11(E, X, R, Z, append_out(E, Y, R)) → FL_IN(X, Y, Z)
fl_in(.(E, X), R, s(Z)) → U1(E, X, R, Z, append_in(E, Y, R))
append_in(.(X, Xs), Ys, .(X, Zs)) → U3(X, Xs, Ys, Zs, append_in(Xs, Ys, Zs))
append_in([], X, X) → append_out([], X, X)
U3(X, Xs, Ys, Zs, append_out(Xs, Ys, Zs)) → append_out(.(X, Xs), Ys, .(X, Zs))
U1(E, X, R, Z, append_out(E, Y, R)) → U2(E, X, R, Z, fl_in(X, Y, Z))
fl_in([], [], 0) → fl_out([], [], 0)
U2(E, X, R, Z, fl_out(X, Y, Z)) → fl_out(.(E, X), R, s(Z))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
APPEND_IN(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN(Xs, Ys, Zs)
fl_in(.(E, X), R, s(Z)) → U1(E, X, R, Z, append_in(E, Y, R))
append_in(.(X, Xs), Ys, .(X, Zs)) → U3(X, Xs, Ys, Zs, append_in(Xs, Ys, Zs))
append_in([], X, X) → append_out([], X, X)
U3(X, Xs, Ys, Zs, append_out(Xs, Ys, Zs)) → append_out(.(X, Xs), Ys, .(X, Zs))
U1(E, X, R, Z, append_out(E, Y, R)) → U2(E, X, R, Z, fl_in(X, Y, Z))
fl_in([], [], 0) → fl_out([], [], 0)
U2(E, X, R, Z, fl_out(X, Y, Z)) → fl_out(.(E, X), R, s(Z))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
APPEND_IN(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN(Xs, Ys, Zs)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
APPEND_IN(.(X, Zs)) → APPEND_IN(Zs)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
FL_IN(.(E, X), R, s(Z)) → U11(E, X, R, Z, append_in(E, Y, R))
U11(E, X, R, Z, append_out(E, Y, R)) → FL_IN(X, Y, Z)
fl_in(.(E, X), R, s(Z)) → U1(E, X, R, Z, append_in(E, Y, R))
append_in(.(X, Xs), Ys, .(X, Zs)) → U3(X, Xs, Ys, Zs, append_in(Xs, Ys, Zs))
append_in([], X, X) → append_out([], X, X)
U3(X, Xs, Ys, Zs, append_out(Xs, Ys, Zs)) → append_out(.(X, Xs), Ys, .(X, Zs))
U1(E, X, R, Z, append_out(E, Y, R)) → U2(E, X, R, Z, fl_in(X, Y, Z))
fl_in([], [], 0) → fl_out([], [], 0)
U2(E, X, R, Z, fl_out(X, Y, Z)) → fl_out(.(E, X), R, s(Z))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
FL_IN(.(E, X), R, s(Z)) → U11(E, X, R, Z, append_in(E, Y, R))
U11(E, X, R, Z, append_out(E, Y, R)) → FL_IN(X, Y, Z)
append_in(.(X, Xs), Ys, .(X, Zs)) → U3(X, Xs, Ys, Zs, append_in(Xs, Ys, Zs))
append_in([], X, X) → append_out([], X, X)
U3(X, Xs, Ys, Zs, append_out(Xs, Ys, Zs)) → append_out(.(X, Xs), Ys, .(X, Zs))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
U11(R, append_out(E, Y, R)) → FL_IN(Y)
FL_IN(R) → U11(R, append_in(R))
append_in(.(X, Zs)) → U3(X, Zs, append_in(Zs))
append_in(X) → append_out([], X, X)
U3(X, Zs, append_out(Xs, Ys, Zs)) → append_out(.(X, Xs), Ys, .(X, Zs))
append_in(x0)
U3(x0, x1, x2)
FL_IN(x0) → U11(x0, append_out([], x0, x0))
FL_IN(.(x0, x1)) → U11(.(x0, x1), U3(x0, x1, append_in(x1)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
FL_IN(x0) → U11(x0, append_out([], x0, x0))
U11(R, append_out(E, Y, R)) → FL_IN(Y)
FL_IN(.(x0, x1)) → U11(.(x0, x1), U3(x0, x1, append_in(x1)))
append_in(.(X, Zs)) → U3(X, Zs, append_in(Zs))
append_in(X) → append_out([], X, X)
U3(X, Zs, append_out(Xs, Ys, Zs)) → append_out(.(X, Xs), Ys, .(X, Zs))
append_in(x0)
U3(x0, x1, x2)
U11(z0, append_out([], z0, z0)) → FL_IN(z0)
U11(.(z0, z1), append_out(x1, x2, .(z0, z1))) → FL_IN(x2)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ QDPOrderProof
FL_IN(x0) → U11(x0, append_out([], x0, x0))
U11(z0, append_out([], z0, z0)) → FL_IN(z0)
U11(.(z0, z1), append_out(x1, x2, .(z0, z1))) → FL_IN(x2)
FL_IN(.(x0, x1)) → U11(.(x0, x1), U3(x0, x1, append_in(x1)))
append_in(.(X, Zs)) → U3(X, Zs, append_in(Zs))
append_in(X) → append_out([], X, X)
U3(X, Zs, append_out(Xs, Ys, Zs)) → append_out(.(X, Xs), Ys, .(X, Zs))
append_in(x0)
U3(x0, x1, x2)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
FL_IN(.(x0, x1)) → U11(.(x0, x1), U3(x0, x1, append_in(x1)))
Used ordering: Polynomial interpretation [25]:
FL_IN(x0) → U11(x0, append_out([], x0, x0))
U11(z0, append_out([], z0, z0)) → FL_IN(z0)
U11(.(z0, z1), append_out(x1, x2, .(z0, z1))) → FL_IN(x2)
POL(.(x1, x2)) = 1 + x1 + x2
POL(FL_IN(x1)) = 1 + x1
POL(U11(x1, x2)) = 1 + x2
POL(U3(x1, x2, x3)) = x1 + x3
POL([]) = 0
POL(append_in(x1)) = x1
POL(append_out(x1, x2, x3)) = x2
append_in(.(X, Zs)) → U3(X, Zs, append_in(Zs))
U3(X, Zs, append_out(Xs, Ys, Zs)) → append_out(.(X, Xs), Ys, .(X, Zs))
append_in(X) → append_out([], X, X)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ UsableRulesProof
FL_IN(x0) → U11(x0, append_out([], x0, x0))
U11(z0, append_out([], z0, z0)) → FL_IN(z0)
U11(.(z0, z1), append_out(x1, x2, .(z0, z1))) → FL_IN(x2)
append_in(.(X, Zs)) → U3(X, Zs, append_in(Zs))
append_in(X) → append_out([], X, X)
U3(X, Zs, append_out(Xs, Ys, Zs)) → append_out(.(X, Xs), Ys, .(X, Zs))
append_in(x0)
U3(x0, x1, x2)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
FL_IN(x0) → U11(x0, append_out([], x0, x0))
U11(z0, append_out([], z0, z0)) → FL_IN(z0)
U11(.(z0, z1), append_out(x1, x2, .(z0, z1))) → FL_IN(x2)
append_in(x0)
U3(x0, x1, x2)
append_in(x0)
U3(x0, x1, x2)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Instantiation
FL_IN(x0) → U11(x0, append_out([], x0, x0))
U11(z0, append_out([], z0, z0)) → FL_IN(z0)
U11(.(z0, z1), append_out(x1, x2, .(z0, z1))) → FL_IN(x2)
U11(.(x0, x1), append_out([], .(x0, x1), .(x0, x1))) → FL_IN(.(x0, x1))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Instantiation
↳ QDP
↳ NonTerminationProof
FL_IN(x0) → U11(x0, append_out([], x0, x0))
U11(z0, append_out([], z0, z0)) → FL_IN(z0)
U11(.(x0, x1), append_out([], .(x0, x1), .(x0, x1))) → FL_IN(.(x0, x1))
FL_IN(x0) → U11(x0, append_out([], x0, x0))
U11(z0, append_out([], z0, z0)) → FL_IN(z0)
U11(.(x0, x1), append_out([], .(x0, x1), .(x0, x1))) → FL_IN(.(x0, x1))